We present the benefits of applying the code once deploy everywhere approach to clustering of categorical data over large datasets. The paper brings two main contributions: an step-by step application of the code based approach and an enhancement for the ROCK algorithm for clustering categorical data.
ROCK algorithm parallelization with TOREADOR primitives
DI Martino B.;D'Angelo S.;Esposito A.;
2018
Abstract
We present the benefits of applying the code once deploy everywhere approach to clustering of categorical data over large datasets. The paper brings two main contributions: an step-by step application of the code based approach and an enhancement for the ROCK algorithm for clustering categorical data.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.