We present the benefits of applying the code once deploy everywhere approach to clustering of categorical data over large datasets. The paper brings two main contributions: an step-by step application of the code based approach and an enhancement for the ROCK algorithm for clustering categorical data.

ROCK algorithm parallelization with TOREADOR primitives

DI Martino B.;D'Angelo S.;Esposito A.;
2018

Abstract

We present the benefits of applying the code once deploy everywhere approach to clustering of categorical data over large datasets. The paper brings two main contributions: an step-by step application of the code based approach and an enhancement for the ROCK algorithm for clustering categorical data.
2018
978-1-5386-5395-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/430551
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact