A Bayesian factor graph reduced to normal form consists in the interconnection of diverter units (or equal constraint units) and Single-Input/Single-Output (SISO) blocks. In this framework localized adaptation rules are explicitly derived from a constrained maximum likelihood (ML) formulation and from a minimum KL-divergence criterion using KKT conditions. The learning algorithms are compared with two other updating equations based on a Viterbi-like and on a variational approximation respectively. The performance of the various algorithm is verified on synthetic data sets for various architectures. The objective of this paper is to provide the programmer with explicit algorithms for rapid deployment of Bayesian graphs in the applications.

A Comparison of Algorithms for Learning Hidden Variables in Normal Graphs

Francesco A. N. Palmieri
2013

Abstract

A Bayesian factor graph reduced to normal form consists in the interconnection of diverter units (or equal constraint units) and Single-Input/Single-Output (SISO) blocks. In this framework localized adaptation rules are explicitly derived from a constrained maximum likelihood (ML) formulation and from a minimum KL-divergence criterion using KKT conditions. The learning algorithms are compared with two other updating equations based on a Viterbi-like and on a variational approximation respectively. The performance of the various algorithm is verified on synthetic data sets for various architectures. The objective of this paper is to provide the programmer with explicit algorithms for rapid deployment of Bayesian graphs in the applications.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/389898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact