Natural convection gets a great attention for its importance in many thermal engineering applications, such as cooling of electronic components and devices, chemical vapor deposition systems and solar energy systems. In this work, a numerical investigation on steady state natural convection in a horizontal channel partially filled with a porous medium and heated at uniform heat flux from above is carried out. A three-dimensional model is realized and solved by means of the ANSYS-FLUENT code. The computational domain is made up of the principal channel and two lateral extended reservoirs at the open vertical sections. Furthermore, a porous plate is considered near the upper heated plate and the aluminium foam has different values of PPI. The numerical simulations are performed with working fluid air. Different values of assigned wall heat flux at top surface are considered and the configuration of the channel partially filled with metal foam is compared to the configuration without foam. Results are presented in terms of velocity and temperature fields, and both temperature and velocity profiles at different significant sections are shown. Results show that the use of metal foams, with low values of PPI, promotes the cooling of the heated wall and it causes a reduction of Nusselt Number values with high values of PPI.

Numerical investigation on natural convection in horizontal channel partially filled with aluminium foam and heated from above

Buonomo, B.;Manca, O.;Nardini, S.
2017

Abstract

Natural convection gets a great attention for its importance in many thermal engineering applications, such as cooling of electronic components and devices, chemical vapor deposition systems and solar energy systems. In this work, a numerical investigation on steady state natural convection in a horizontal channel partially filled with a porous medium and heated at uniform heat flux from above is carried out. A three-dimensional model is realized and solved by means of the ANSYS-FLUENT code. The computational domain is made up of the principal channel and two lateral extended reservoirs at the open vertical sections. Furthermore, a porous plate is considered near the upper heated plate and the aluminium foam has different values of PPI. The numerical simulations are performed with working fluid air. Different values of assigned wall heat flux at top surface are considered and the configuration of the channel partially filled with metal foam is compared to the configuration without foam. Results are presented in terms of velocity and temperature fields, and both temperature and velocity profiles at different significant sections are shown. Results show that the use of metal foams, with low values of PPI, promotes the cooling of the heated wall and it causes a reduction of Nusselt Number values with high values of PPI.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11591/386210
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact