This paper proposes an approach to support cloud brokers finding optimal configurations in the deployment of dependability and security sensitive cloud applications. The approach is based on model-driven principles and uses both UML and Bayesian Networks to capture, analyse and optimise cloud deployment configurations. While the paper is most focused on the initial allocation phase, the approach is extensible to the operational phases of the life-cycle. In such a way, a continuous improvement of cloud applications may be realised by monitoring, enforcing and re-negotiating cloud resources following detected anomalies and failures.
Automatic resource allocation for high availability cloud services
MARRONE, Stefano;
2015
Abstract
This paper proposes an approach to support cloud brokers finding optimal configurations in the deployment of dependability and security sensitive cloud applications. The approach is based on model-driven principles and uses both UML and Bayesian Networks to capture, analyse and optimise cloud deployment configurations. While the paper is most focused on the initial allocation phase, the approach is extensible to the operational phases of the life-cycle. In such a way, a continuous improvement of cloud applications may be realised by monitoring, enforcing and re-negotiating cloud resources following detected anomalies and failures.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.