The use of smart-sensors to recognize automatically complex situations (anomalous behaviors, physical security threats, etc.) requires 'intelligent' methods to improve the trustworthiness of automatic decisions. Voting and consensus mechanisms can be employed whether supported by probabilistic formalisms to correlate event occurrence, to merge local events and to estimate the likelihood of overall decisions. This paper presents the results of a quantitative comparison of three different voting schemes based on Bayesian Networks. These models present a growing complexity and they are able to provide a trustworthiness estimation based on single nodes detection reliability in terms of false alarm probabilities.

Using Bayesian Networks to evaluate the trustworthiness of '2 out of 3' decision fusion mechanisms in multi-sensor applications

MARRONE, Stefano;MAZZOCCA, Nicola;
2015

Abstract

The use of smart-sensors to recognize automatically complex situations (anomalous behaviors, physical security threats, etc.) requires 'intelligent' methods to improve the trustworthiness of automatic decisions. Voting and consensus mechanisms can be employed whether supported by probabilistic formalisms to correlate event occurrence, to merge local events and to estimate the likelihood of overall decisions. This paper presents the results of a quantitative comparison of three different voting schemes based on Bayesian Networks. These models present a growing complexity and they are able to provide a trustworthiness estimation based on single nodes detection reliability in terms of false alarm probabilities.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/365039
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact