The paper addresses two case studies of structural monitoring and seismic assessment of medieval masonry towers in Italy: the bell tower of Aversa and the bell tower of Capua. These monuments in the Campania region were monitored by means of full-scale environmental vibration testing. Measured responses were then used for modal identification. The procedure is based on a typical finite element model updating technique based on vibration test results. Parameters optimization is carried out by minimizing a weighted error criterion relative to the building’s modal properties. A satisfactory improvement on modal parameters is thus obtained, resulting in a close agreement between the modal properties observed in dynamic tests and those calculated from numerical model. Seismic assessment is carried out with nonlinear static analysis of the tower under multimodal distributions of lateral loads. Nonlinear analysis indicates the potential collapse mechanisms and evidences dangerous structural weakness which may play a role in the seismic vulnerability of the towers.

Dynamic identification and seismic safety of masonry bell towers

FERRAIOLI, Massimiliano;MANDARA, Alberto;
2011

Abstract

The paper addresses two case studies of structural monitoring and seismic assessment of medieval masonry towers in Italy: the bell tower of Aversa and the bell tower of Capua. These monuments in the Campania region were monitored by means of full-scale environmental vibration testing. Measured responses were then used for modal identification. The procedure is based on a typical finite element model updating technique based on vibration test results. Parameters optimization is carried out by minimizing a weighted error criterion relative to the building’s modal properties. A satisfactory improvement on modal parameters is thus obtained, resulting in a close agreement between the modal properties observed in dynamic tests and those calculated from numerical model. Seismic assessment is carried out with nonlinear static analysis of the tower under multimodal distributions of lateral loads. Nonlinear analysis indicates the potential collapse mechanisms and evidences dangerous structural weakness which may play a role in the seismic vulnerability of the towers.
2011
978-88-7522-040-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/321776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact