Next generation reusable re-entry vehicles must be capable of sustaining consistent repeated aero-thermal loads without damage or deterioration. This means that such structures must tolerate the high temperatures engendered by aero-thermal reentry fluxes due to the establishment of a hypersonic regime over the body. Thermal Protection Systems (TPS) are used to maintain a reusable launch vehicle's structural temperature within acceptable limits during re-entry flights; that is, internal temperature should not overcome the temperature limit use of the internal structure. TPS are usually composed by several layers made of different materials. Heat transfer through a multilayer insulation during atmospheric re-entry involves combined modes of heat transfer: heat conduction through the solid, heat radiation to the outer space etc. In the frame of TPS design activities a procedure based on one dimensional analytical solutions of transient nonlinear analyses has been developed in order to estimate the temperature variation with time and space of a multilayered body subjected to aerodynamic heating inside a radiating space. Since internal temperature values of TPSs of re-entry vehicles cannot exceed certain values, that procedure allows to quickly evaluate those temperature values and to preliminary size layer thicknesses before preparing and performing Finite Element analyses.

A Procedure to evaluate the thermal response of a multi-layered Thermal Protection System subjected to aerodynamic heating

MANCA, Oronzio;RICCIO, Aniello
2009

Abstract

Next generation reusable re-entry vehicles must be capable of sustaining consistent repeated aero-thermal loads without damage or deterioration. This means that such structures must tolerate the high temperatures engendered by aero-thermal reentry fluxes due to the establishment of a hypersonic regime over the body. Thermal Protection Systems (TPS) are used to maintain a reusable launch vehicle's structural temperature within acceptable limits during re-entry flights; that is, internal temperature should not overcome the temperature limit use of the internal structure. TPS are usually composed by several layers made of different materials. Heat transfer through a multilayer insulation during atmospheric re-entry involves combined modes of heat transfer: heat conduction through the solid, heat radiation to the outer space etc. In the frame of TPS design activities a procedure based on one dimensional analytical solutions of transient nonlinear analyses has been developed in order to estimate the temperature variation with time and space of a multilayered body subjected to aerodynamic heating inside a radiating space. Since internal temperature values of TPSs of re-entry vehicles cannot exceed certain values, that procedure allows to quickly evaluate those temperature values and to preliminary size layer thicknesses before preparing and performing Finite Element analyses.
2009
9780791843741
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/176541
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact