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Abstract: Neurofibromas are the hallmark lesions in Neurofibromatosis 1 (NF1); these tumors are
classified as cutaneous, subcutaneous and plexiform. In contrast to cutaneous and subcutaneous
neurofibromas, plexiform neurofibromas can grow quickly and progress to malignancy. Curcumin,
a turmeric-derived polyphenol, has been shown to interact with several molecular targets implicated
in carcinogenesis. Here, we describe the impact of different dietary patterns, namely Mediterranean
diet (MedDiet) compared to the Western diet (WesDiet), both with or without curcumin, on NF1
patients’ health. After six months, patients adopting a traditional MedDiet enriched with 1200 mg
curcumin per day (MedDietCurcumin) presented a significant reduction in the number and volume
of cutaneous neurofibromas; these results were confirmed in subsequent evaluations. Notably, in one
patient, a large cranial plexiform neurofibroma exhibited a reduction in volume (28%) confirmed
by Magnetic Resonance Imaging. Conversely, neither unenriched MedDiet nor WesDiet enriched
with curcumin exhibited any significant positive effect. We hypothesize that the combination of a
polyphenol-rich Mediterranean diet and curcumin was responsible for the beneficial effect observed
on NF1. This is, to the best of our knowledge, the first experience with curcumin supplementation in
NF1 patients. Our report suggests that an integrated nutritional approach may effectively aid in the
management of NF1.
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1. Introduction

Polyphenols are secondary metabolites ubiquitous in the plant kingdom with unique antioxidant
properties and a wide spectrum of therapeutic activities. It is well known that the phenolic
compounds present mainly in olive oil contribute significantly to the superior health profile observed
in Mediterranean populations following the traditional Mediterranean diet (MedDiet). In addition,
curcumin, the most bioactive polyphenolic constituent of turmeric and an integral part of the Indian
diet, exerts protective effects on a variety of diseases such as cardiac diseases, cancer, diabetes,
Alzheimer’s disease, rheumatoid arthritis and psoriasis [1–6].

However, the mechanisms by which dietary polyphenols can affect human diseases are multiple
and complex. Various stages of carcinogenesis may be inhibited by polyphenols in in vitro or in vivo
systems. For example, curcumin is able to inhibit diethylnitrosamine-induced hepatocarcinogenesis
in mice at a concentration of 0.2% in the diet [7], but the biological mechanism(s) of this effect has
only been partially clarified. Again, olive oil polyphenols seem to exert anticancer effects through
the modulation of genes and molecular signaling pathways associated with cell survival, cell cycle
progression, cell growth arrest and apoptosis, as demonstrated in several tumor cell lines [8]. Recent
findings suggest that polyphenols may exert anti-proliferative activity by affecting the cell metabolism.
In particular, polyphenols have the potential to modulate glucose uptake, and to alter the glutathione
as well as lipid metabolism [9]. Furthermore, there is experimental evidence that supports an effect
of polyphenols on the entry of glutamine, an amino-acid essential for cancer metabolism, into the
cells [10].

Interestingly, it has also been reported that polyphenols can affect tumor progression by interfering
with the dynamic interactions between several components within the tumor microenvironment and
the cancer cells. Indeed, the bi-directional interaction between cancer cells and the surrounding
cells increases tumor proliferation, invasion and metastasis, and allows the tumor cells to resist
therapeutic insults [11]. Curcumin is able to interfere with the cross-talk between cancer stem cells and
stromal fibroblasts, resulting in the reversal of epithelial to mesenchymal transition and associated
metastasis [11]. Furthermore, curcumin, by a dual mode of action, is able to modulate the enzymatic
activity of the EGF receptor (EGF-R) intracellular domain [12].

In our study, we evaluated the effects of a traditional Mediterranean diet (rich in polyphenol
content) compared to a Western dietary “pattern”, both with or without curcumin supplementation,
in case series of patients with Neurofibromatosis type 1 (NF1), one of the most common autosomal
dominant genetic disorders that affects ~1 in 3500 individuals [13]. The NF1 gene (17q11.2.5;
NM_000267.3) encodes neurofibromin, a cytoplasmic protein of 2818 amino acids (molecular
mass of 220–250 kDa) that promotes the intrinsic GTPase activity of Ras [14]. Nearly all NF1
patients develop dermal neurofibromas. In addition, they can develop brain tumors (gliomas and
glioblastomas) and peripheral nerve tumors (spinal neurofibromas, plexiform neurofibromas and
malignant peripheral nerve sheath tumors). The NF1 phenotype is not complete at birth despite
being a genetic disease [13,14]. The mutation of NF1 has full penetrance and the symptoms appear
in an age-dependent manner [13,14]. Therefore, the influence of nutrition is fundamental in the
epigenetic control of the disease. Of interest, de Souza et al, reporting that NF1 patients consumed
an unhealthy diet, rich in fats and sodium and poor in fiber, vitamins, and minerals, hypothesized a
role of the dietary and nutritional patterns in the severity of the clinical manifestations of NF1 [15]. In
addition, Carotenuto and Esposito demonstrated that adjustments of the diet influenced the clinical
features in NF1. In particular, the addition of nutraceuticals improved several symptoms affecting
NF1 patients, such as migraine-related disability [16]. Although considerable progress has been made
in understanding NF1, no effective therapy is available to treat this pathological condition. Herein
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we demonstrated that a Mediterranean diet and curcumin act synergically to induce a significant
reduction in the number and size of neurofibromas, thus suggesting that an integrated nutritional
approach could be effective in the management of NF1.

2. Materials and Methods

Our series included eleven NF1 patients identified on the basis of the National Institutes of
Health (NIH) Consensus Conference criteria (National Institutes of Health Consensus Development
Conference Statement: Neurofibromatosis 1988), clinically followed up at our Division of Neurology,
Neurofibromatosis and Rare Diseases Center of the University Hospital, University of Campania Luigi
Vanvitelli, Italy (Table 1). Of these eleven patients, seven lacked a family history of NF1.

Eight patients were screened for NF1 mutations (see Table 1). Genetic testing revealed that six
of them carried a mutation producing truncated neurofibromin, as confirmed by a new diagnostic
technique recently described by our group [17]; Patient 9 presented a single-nucleotide mutation, while
Patient 3 presented a newly discovered intragenic heterozygous deletion encompassing exon 12 and
13 [18].

2.1. Methods

The NF1 patients were divided into four groups on the basis of their dietary regimen: the first
group (n = 2) was instructed to follow a Western diet (WesDiet); the second (n = 3) a traditional
Mediterranean-style diet (MedDiet); the third (n = 3) a Western diet enriched with curcumin
(WesDietCurcumin); and the fourth (n = 3) a traditional Mediterranean-style diet enriched with
curcumin (MedDietCurcumin). All the diets were evaluated by a dietitian. In particular, the Western
diet included ad libitum the consumption of red and processed meat, refined grains, French fries,
sweets and desserts. No total calorie restriction was advised.

The traditional Mediterranean-style diet included the abundant use of olive oil for cooking and
dressing dishes (extra-virgin olive oil—50 mL/day with >2000 mg/kg total phenol concentration as
determined by Folin-Ciocalteu’s assay—Sigma Aldrich, St. Louis, MO, USA), the consumption of
≥2 daily servings of vegetables, ≥3 daily servings of fresh fruits, ≥3 weekly servings of legumes,
≥3 weekly servings of fish or seafood, white meats instead of red meats or processed meats (burgers,
sausages), and avoiding the consumption of cream, butter, margarine, pate, duck, carbonated and/or
sugared beverages, pastries, industrial bakery products and desserts, French fries or potato chips,
and sweets. Curcumin was supplemented at a dose of 1200 mg to the third and fourth groups at
lunchtime [19,20]. Finally, all patients were invited to restrict foods known to contain curcumin.

Physical activity was not specifically advised for all NF1 patients. Compliance with the program
was assessed by attendance at the follow-up visits and completion of the diet diaries. The patients
were seen at two-monthly intervals over the six months of follow-up, after the introduction of the
different diets. A complete physical examination, an evaluation of plasmatic curcumin level, integrated
by photographic documentation were performed at each visit. Manual counting one by one of
cutaneous neurofibromas was performed on all images (to facilitate the counting process, images were
re-elaborated using Photoshop® software by Adobe Systems Software, Belfast, Ireland).



Nutrients 2017, 9, 783 4 of 17

Table 1. NF1 patient data.

Diet Patient ID Age Sex Familiar
NF1

Sporadic
NF1

Café-Au-Lait
Spots

Number > 6

Cutaneous or
Subcutaneous
Neurofibromas

Freckling Lisch
Nodules

Plexiform
Neurofibroma Scoliosis Optic Pathway

Glioma
Molecular
Testing

Short
Stature

Pathological Findings on
Brain MRI

W
es

D
ie

t 1 A.S. 38 M yes no yes yes yes yes no yes yes yes no T2-Weighted
Hyperintensities (Ubo’s)

2 A.F. 22 M yes no yes yes yes yes yes yes yes yes no T2-Weighted
Hyperintensities (Ubo’s)

M
ed

D
ie

t 3 E.M. 27 M yes no yes yes yes yes yes no no yes no Fusiform aneurysms of
both ICAs (ref)

4 B.E. 18 M no yes yes yes yes yes yes yes no yes yes T2-Weighted
Hyperintensities (Ubo’s)

5 D.M.M. 22 M no yes yes yes yes yes no yes no yes no No signs

W
es

D
ie

tC
ur

cu
m

in

6 A.M.C. 41 F yes no yes yes yes yes no yes no no no

T2-Weighted
Hyperintensities (Ubo’s);
vascular malformations
(hypoplastic mid-distal
portion of basilar artery

and intra-cranial vertebral
artery; intracavernous

right carotid aneurysm)

7 A.N. 59 M no yes yes yes yes yes yes yes no no no No signs

8 A.F. 44 F no yes yes yes yes yes no no no no no
T2-Weighted

Hyperintensities (Ubo’s);
hypoplasia of PCA

M
ed

D
ie

tC
ur

cu
m

in 9 P.C. 54 M no yes yes yes yes yes no no no yes no No signs

10 F.L. 27 F no yes yes yes yes yes no no no yes no No signs

11 R.S. 50 M no yes yes yes yes yes yes yes no yes no Multiple foci of T2 hyper
intensity (vascular gliosis)

Note: Ubo’s = unidentified bright objects; ICAs = internal carotid arteries; PCA = posterior cerebral artery; F: Female.
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When appropriate, magnetic resonance imaging (MRI) was performed. Head MR was performed
using a 1.5 T MRI unit (Philips Gyroscan) including axial Spin-Echo T1, Turbo Spin-Echo (TSE) T2 and
FLAIR (slice thickness: 5 mm), coronal FLAIR (slice thickness 3 mm), sagittal TSE T2 (slice thickness:
4 mm) and axial DWI (Diffusion Weighted Imaging). Volumetric analysis was performed using an
algorithm for volumetric evaluations available in OsiriX, a software for viewing and processing DICOM
images. It was necessary to make a correction of the gap between the slices (intergap correction).
The tumor profiles were manually traced “slice by slice”.

The patients’ nutritional status was evaluated applying a combination of clinical observation,
bioimpedentiometric analysis and anthropometric and biochemical parameters.

2.2. Ethics

This study was approved by the Medical Ethics Committee and Safety Board of the University
of Campania Luigi Vanvitelli, in accordance with the Declaration of Helsinki on ethical principles
for medical research involving human subjects (protocol number 479/13). Written informed consent
was obtained from each patient before admission to the study and to allow the initiation of any
study-related procedures. In addition, the patients authorized the publication of this manuscript,
its accompanying images and other data.

2.3. Plasma Sample Preparation

A plasma aliquot was first treated with 10 µL of 6.0 M HCl and then with 10 U of β-glucuronidase
type H-1 from Helix pomatia in 0.1 M phosphate buffer (pH 6.86). The resulting mixture was
then thoroughly vortexed and incubated at 37 ◦C for 1 h to hydrolyze the phase-2 conjugates of
curcuminoids. After incubation, curcuminoids were extracted with 2 volumes of methanol/chloroform
(1:2 v/v), sonicated in a water bath for 15 min and evaporated to dryness at 30 ◦C under negative
pressure in a centrifugal concentrator. This process was repeated for a total of two extractions. The
dried extract was reconstituted in methanol and subjected to HPLC analysis.

2.4. Chromatographic Analysis of Curcuminoids

The HPLC-UV procedure was conducted according to Heath et al. [21] with some modification.
The analysis was carried out on Agilent 1260 Infinity Quaternary LC (Agilent Technologies, Santa Clara,
CA, USA) equipped with a DAD (Diode-Array Detector). The chromatographic separation was
performed on a Gemini® 5 µm C18 110 Å, LC Column 250 × 4.6 mm (Phenomenex, Torrance, CA,
USA) protected by a guard column (Security Guard Cartridge C18, 4 × 2.0 mm inner diameter,
Phenomenex, Torrance, CA) and maintained at 30 ◦C. A linear elution gradient consisting of a mobile
phase A (0.1% acetic acid), B (Acetonitrile), and C (Methanol) was programmed as follows: initially
50% A, 45% B, and 5% C, linearly changed to 30% A, 65% B, and 5% C over 5 min, and then held
for 4 min at 30% A, 65% B, and 5% C. The system was then re-equilibrated for 5 min with the initial
solvent. The detection wavelength was set at 420 nm. The quantitation of curcuminoids is by peak
area ratio (curcumin, demethoxycurcumin and bisdemethoxycurcumin to internal standard) and is
based on a standard curve in a plasma or urine matrix, generated by using an external standard to
spike plasma or urine. A linear curve is generated from a single analysis of six different standard
concentrations. System control and data acquisition were performed using the ChemStation software
(Agilent Technologies, Santa Clara, CA, USA).

2.5. Statistical Analysis

Statistical analysis was conducted using a one-way ANOVA test, with the significant differences
determined at p < 0.05, using GraphPad Prism Version 5.04 software (GraphPad Software, San Diego,
CA, USA).
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3. Results

Patients 1, 2, 6, 7 and 8 did not adhere to the MedDiet and did not significantly modify their
dietary habits, which were consistent with a WesDiet; among them, Patient 6, 7 and 8 agreed to
introduce curcumin to their diet (WesDietCurcumin). Patients 3, 4 and 5 followed a MedDiet. Patients
9, 10 and 11 agreed to follow a MedDietCurcumin. As shown in Table 1, all patients presented a clinical
picture characterized by more than six cafè-au-lait spots, intertriginous freckling and both cutaneous
and subcutaneous neurofibromas; patients 2, 3, 4, 7 and 11 presented plexiform neurofibromas.
NF1 complications were present in patients 1, 2, 4, 5, 6, 7 and 11 with scoliosis, in patient 4 with
short stature, and in patients 1 and 2 with optic pathway glioma [22]. Patients 3, 6 and 8 presented
cerebrovascular abnormalities, which are a common occurrence in NF1 [23]. In particular, patient 3
presented very rare bilateral aneurysms of both internal carotid arteries, as extensively described in
a previous report [18]. Patients 1, 2, 3 and 4 had a family history of NF1.

3.1. Follow-Up

Clinical follow-up integrated by self-assessment of outcome in the first (WesDiet—patients 1
and 2), second (MedDiet—patients 3, 4 and 5) and third group (WesDietCurcumin—patients 6, 7
and 8) did not detect significant phenotypic variations in the number, size and color of cutaneous
neurofibromas or in other signs and symptoms of disease, clinically detectable, at the different time
points, compared to baseline. Patient 9 (Table 1), a 54-year-old woman, showed a severe cutaneous
phenotype. Her medical history was notable for numerous surgical removals of limb and trunk
lesions, histologically defined as neurofibromas (Figure 1a–g). A comprehensive physical examination
performed at baseline showed widespread cafè-au-lait spots, axillary and inguinal freckling and
numerous cutaneous neurofibromas on the neck, trunk, upper and lower limbs and perianal area. These
neurofibromas varied in size and shape, with both sessile and pedunculated forms widely represented;
they were soft and not painful to the touch. While most smaller neurofibromas were flesh-colored,
the area located between the right anterior and posterior axillary lines comprised several tumors
with a brownish-red color; a larger, round, pedunculated neurofibroma was particularly prominent
(Figure 2a). In this area a manual count of 212 distinct neurofibromas was made (Figure 2b). Six months
after the introduction of MedDietCurcumin, as shown in Figure 2c,d, there was a striking reduction in
the number of neurofibromas compared to baseline. In fact, at this follow-up appointment, only 110
(51%) neurofibromas were detected (Figure 2f). Besides a decrease in the number of neurofibromas,
a decrease in their volume was observed, particularly evident for the larger neurofibromas, which
appeared to be considerably smaller in size, lighter in color, and softer to the touch.

Patient 10, (Table 1), a 27-year-old woman diagnosed in infancy due to the presence of more than
six cafè-au-lait spots; during adolescence, she developed axillary freckling and several neurofibromas.
Prior to the introduction of MedDietCurcumin, she presented diffuse cafè-au-lait spots, bilateral axillary
and inguinal freckling and cutaneous neurofibromas of various sizes on the trunk and limbs. Several
sessile and pedunculated cutaneous neurofibromas were observed on the left breast, and in particular
in the areolar area (Figure 3a); in the area selected, we counted 20 neurofibromas (Figure 3b). At the
six-month follow-up, she presented a reduction in the volume of several cutaneous neurofibromas
in the area selected. Furthermore, a significant decrease in the number of neurofibromas (30%) was
evident, as shown in Figure 3c,d and in the histogram in Figure 3e.
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Magnification 10×); (c,d) Spindle cell nuclei in a fine fibrillary matrix, at a greater magnification 
(Hematoxylin-Eosin, Magnification 40×); (e) S100 immunohistochemical test confirmed the 
neurogenic origin of the lesion (Magnification 20×); (f) Actin-hhf35 immunohistochemical test 
excluded the myogenic origin of the lesion (note that only perivascular splindle smooth cells were 
reactive) (Magnification 20×); (g) Proliferation index by Ki67 immunohistochemical test was almost 
negative (Magnification 20×). 
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Figure 1. Neurofibroma resection specimen. (a,b) Spindle “wavy” cells in a matrix of fine fibrillary
collagen; neurofibromatous tissue merges with mature fat and ectatic vessels (Hematoxylin-eosin,
Magnification 10×); (c,d) Spindle cell nuclei in a fine fibrillary matrix, at a greater magnification
(Hematoxylin-Eosin, Magnification 40×); (e) S100 immunohistochemical test confirmed the neurogenic
origin of the lesion (Magnification 20×); (f) Actin-hhf35 immunohistochemical test excluded the
myogenic origin of the lesion (note that only perivascular splindle smooth cells were reactive)
(Magnification 20×); (g) Proliferation index by Ki67 immunohistochemical test was almost negative
(Magnification 20×).
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immediately after baseline observation for histological examination; (b,d) Digital re-elaboration of 
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Figure 2. Right lateral view of thoracic region in patient 9: serial clinical assessment. (a,c) The large red
square outlines the sampled area at baseline (a) and after six months of MedDietCurcumin (c); the small
red square indicates the most prominent neurofibroma in the area, which was removed immediately
after baseline observation for histological examination; (b,d) Digital re-elaboration of the images in A
and C to facilitate manual counting of cutaneous neurofibromas; (e) Bar chart representing the number
of neurofibromas in the sampled area at baseline and at six-month follow-up.

Patient 11 (Table 1), a 50-year-old man at the time of our first observation. Since childhood,
he presented cafè-au-lait spots and subcutaneous neurofibromas on the trunk and lower limbs; he had
also developed a large formation in the left orbito-temporal region, which had been partially resected
when he was 44 years old; this lesion had been histologically diagnosed as a plexiform neurofibroma.
During the following two years, the residual neurofibroma had increased in volume, infiltrating the
ipsilateral orbital cavity and compressing the eyeball and causing partial left palpebral ptosis. Clinical
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examination of the lesion at baseline showed a large subcutaneous mass originating from the left
upper eyelid and reaching the temporal region. It had a gray-rosy color, indistinct margins, soft
elastic consistency and was not painful to the touch. A brain MRI at baseline (Figure 4a,c,e) showed
pseudo-nodular formations (neurofibromas) in the left fronto-parietal-temporal area, extending to
the ipsilateral orbital region. Six months later, the brain MRI (Figure 4b,d,f) showed a clear volume
reduction in this plexiform neurofibroma, especially visible in axial TSE T2 weighted slices of the
inferior portion (Figure 4e,f). The total volume reduction was around 28%.
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reworking of the image in A and C to facilitate manual counting of cutaneous neurofibromas;
(e) Bar chart representing the number of neurofibromas in the sampled area at baseline and at
six-month follow-up.
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Figure 4. Serial MR imaging assessment of case 11. (a) Coronal FLAIR-weighted and (c,e) Axial TSE
T2-weighted images of the left facial plexiform neurofibroma at baseline; (b) Coronal FLAIR-weighted
and (d,f) Axial TSE T2-weighted images after six months of MedDietCurcumin. After six months there
was a significant reduction especially in the hyperintense parts of the lesion, as indicated by arrows in
(c,d). In (e,f) a green border contours the area used for volume measurement.

3.2. Nutritional and Bioimpedentiometric Data

From a metabolic point of view, as shown in Table 2, no significant changes in BMI in the WesDiet
group (patients 1 and 2) or WesDietCurcumin (6–8) were observed.
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Table 2. Bioimpedentiometric and metabolic analysis in the course of follow-up.

Diet Patient ID Age
(Years) Sex Time % Cell

Mass
% Tot
Water

% Extracell
Water

% Intracell
Water % Fat % FFM 1 BMR 1 BMI 1 PA 1 NA/K

W
es

D
ie

t

1 A.S.
Baseline 52.3 54 49.7 50.3 26.7 73.3 1235 25 5.7 1.2

38 M 6 months 51.8 53 53.2 46.8 27.2 72.8 1198 25.4 5.5 1.3

2 A.F.
Baseline 49.7 46.8 56.2 43.8 32.7 63.7 1065 28 6 1.2

22 M 6 months 48.2 44.6 55.8 44.2 35.6 64.4 998.6 28.5 5.8 1.2

M
ed

D
ie

t 3 E.M.
Baseline 49.7 54 48.3 51.7 24.6 75.4 1324 26 5.5 1.2

27 M 6 months 51.2 59.6 45.7 54.3 21.2 78.8 1435 23 6.1 0.9

4 B.E.
Baseline 46.8 42.8 52 48 43.5 56.5 1129 36 4.8 1.3

18 M 6 months 51.4 45.7 46 54 37.8 62.2 1326 30 5.8 1

5 D.M.M.
Baseline 42.7 54.1 53.3 46.7 26.8 73.2 1223 27 5.9 1.1

22 M 6 months 43.4 56.7 46.8 53.2 25 75 1276 26.7 6 1.1

W
es

D
ie

tC
ur

cu
m

in

6 A.M.C.
Baseline 50.9 58 48 52 21.4 79.6 1345.2 25 5.7 1.1

41 F 6 months 51.6 59 47.2 52.8 20.9 79.1 1365 24.9 5.6 1.2

7 A.N.
Baseline 47 48.8 54 46 38.6 61.4 1237 32 4.9 1.2

59 M 6 months 47.1 47.6 55 45 38 62 1195 31.7 4.8 1.1

8 A.F.
Baseline 49.2 48.7 50 50 34.4 65.6 1356 30 5.3 0.9

44 F 6 months 50 48.2 48.5 51.5 33.6 66.4 1376.2 29.7 5.4 1

M
ed

D
ie

tC
ur

cu
m

in

9 P.C.
Baseline 41.2 55.2 50.2 49.8 24.8 75.2 956.4 23 4.5 1.3

54 F 6 months 51.5 59.3 48 52 19 81 1250.6 22 5.5 1.2

10 F.L.
Baseline 49.1 45.4 49 51 38 62 1343.3 34 5.3 1

27 F 6 months 57.1 48.3 45 55 34.1 65.9 1519.4 31 6.1 0.9

11 R.S.
Baseline 50.2 59 47.2 52.8 19.4 80.6 1276.7 24 5.7 1.1

50 M 6 months 52.2 64.4 47.6 52.4 12 88 1407.6 23 5.6 1.3
1 FFM: Fat-Free Mass; BMR: Basal Metabolic Rate; PA: Phase Angle; BMI: Body Mass Index.
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All patients following a Mediterranean diet with curcumin supplementation (9, 10 and 11) or
without curcumin (3, 4 and 5) presented a general improvement in their metabolic status, with a
BMI reduction and an increase in body hydration, due to the greater intake of water; in all of these
patients, the percentage of fat-free mass (FFM), and basal metabolism (BMR) increased. Phase angle
(PA) improved in the Mediterranean and MedDietCurcumin patients, with the exception of patient 11,
for whom it remained stable. Na/K exchange remained essentially unchanged in all of these patients.

No patient reported any side effects of curcumin consumption

3.3. Plasma Curcuminoid Level

The curcumin supplemented dietary regimen was established on the basis of previous clinical
studies for inflammatory conditions, where active dosages of around 1–2 g/day of curcuminoid
were used [19,20]. For this study, subjects consumed, in association with Western or traditional
Mediterranean-style diet, 1200 mg total curcuminoids. Once absorbed, curcumin is subjected to
conjugations like sulfation and glucuronidation at various tissue sites. For this reason, all plasma
samples were treated with Helix pomatia glucuronidase/sulfatase before HPLC analysis. Our data
(Figure 5) demonstrated that the plasma level of curcumin increased linearly over sixth months in
patients who consumed the MedDietCurcumin, reaching a final plasma concentration ranging from
49.2 ± 1.0 ng/mL to 79.0 ± 3.6 ng/mL. Conversely, patients treated with a Western diet supplemented
with curcumin showed very low plasma concentrations of curcumin even after sixth months of
diet. Taken together, our results demonstrate that a traditional Mediterranean-style diet improves
curcuminoid bioavailability.
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Figure 5. Plasma levels of curcuminoids. HPLC analysis of enzymatically hydrolyzed plasma samples.
For each sample, three different experiments were conducted and the results expressed as the mean of
the values obtained (mean ± SD). Statistically significant variations: ** p < 0.01 4 months diet versus
2 months diet; ## p < 0.01 6 months diet versus 2 months diet; ### p < 0.001 6 months diet versus
2 months diet.

4. Discussion

The association between NF1 and malignant tumors (gliomas, malignant peripheral nerve sheath
tumors (MPNST), leukemia and rhabdomyosarcoma) has been largely described [24]. The mutation
is highly penetrant: by age 20, almost 100% of the mutation carriers will manifest the disease in
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some form [25]. NF1 is notable for its high phenotypic variability, both within and between families,
which means that family members carrying the exact same mutation may present with vastly different
clinical pictures [26]. Multiple factors have been put forward as mechanisms underlying this variability,
including modifying genes [27], allelic heterogeneity, mutation in the second allele, somatic mosaicism,
epigenetic events and exposure to environmental agents [28,29].

Here we report the beneficial effects of a traditional Mediterranean Diet (MedDiet) enriched
with curcumin (MedDietCurcumin) on the number and size of neurofibromas in all NF1 patients
consuming this diet (patients 9–11). Indeed, besides the improvement in the general metabolic status,
and particularly of the lipid profile, we observed a marked reduction in the number (ranging from
30 to 51%) and volume of neurofibromas after six months of MedDietCurcumin. Notably, the large
cranial plexiform neurofibroma in patient 11 exhibited a marked volume reduction (28.2%), as shown
by a conventional imaging method. In contrast, we observed no significant effect on the pattern of
neurofibromas in the patients who did not follow MedDietCurcumin.

Epidemiological evidence and many case-control studies suggest that a Mediterranean diet
plays a pivotal role in lowering the risk of several chronic diseases, including cardiovascular disease,
neurodegenerative disease, diabetes, and cancer. A high intake of olive oil is considered a hallmark
of the traditional Mediterranean diet. In this study, we used extra-virgin olive oil (EVO—the juice
of the olive obtained solely by pressing and consumed without any further refining process) having
>2000 mg/kg total phenol concentration. It has been reported that EVO consumption increases the
monounsaturated fatty acid content in phospholipids and cholesterol esters by modifying the fatty
acid composition of the plasma membrane, which influences the association of G proteins and PKCa
with the lipid bilayer in elderly persons with type 2 diabetes [30]. The authors demonstrated that
after consuming EVO for 4 weeks, the patients showed a significant increase in the total amount
of monounsaturated fatty acid, mostly due to a rise in the proportion of oleic acid and a decrease
in saturated fatty acids, which influences the membrane fluidity [31]. In addition, the EVO used
contained a high level of naturally occurring phenolic compounds, the key feature of prevention of a
number of diseases and pathological conditions (i.e., cancer and several aging-associated degenerative
diseases) [32,33]. Increasing studies highlight the anti-proliferative and pro-apoptotic effects of the
two major EVO components, oleuropein and hydroxytyrosol, on cancer cells and show that these
effects stem from different mechanisms depending on the cell type. For example, these polyphenols are
able to reduce angiogenesis via downregulation of cyclooxygenase-2 (COX-2) expression, prostanoid
production and matrix metallopeptidase 9 (MMP-9) protein release, together with a reduction in
intracellular ROS levels and NFκB activation [34–37]. Moreover, polyphenols stimulate apoptosis by
activating pro-apoptotic Bcl-2 family members and PI3K/AKT signaling in pancreatic cancer and
hepatoma cells, and increasing the c-Jun-N-terminal kinase (cJNK), p53, p21, Bax and cytochrome c
cytoplasmic concentration in HeLa and cervix carcinoma cells [38–40]. Furthermore, in breast cancer
cells, p53 or the G protein-coupled estrogen receptor 1/30 (GPER1/GPR30) pathway activation has
also been shown, as well as the inhibition of the anti-apoptotic and pro-proliferation protein NFκB and
cyclin D1, its main oncogenic target [41]. Moreover, the ability of curcumin to target multiple signaling
pathways that are linked to tumorigenesis in NF1 represents a promising avenue for therapeutic
intervention [42,43].

In particular, curcumin has been extensively studied for its role in Ras oncogenic signaling
pathways, notably by abolishing the RAS-ERK signaling mechanism [44]. Depending on the cell type
and stimulus, ERK activity mediates different antiproliferative events, such as apoptosis, autophagy
and senescence in vitro and in vivo [45]. Findings in the last decade have demonstrated intriguing
effects of curcumin in PI3K/AKT/mTOR signaling [46,47]. For instance, curcumin induces G2-M
arrest and autophagy in malignant glioma cells through the inhibition of Akt/mTOR/p70S6K
and activation of the extracellular signal-regulated kinase (ERK)1/2 pathways, suggesting that
autophagy-mediated cell death might be pathway-specific [48]. In addition, preclinical studies show
that curcumin induces apoptosis and G2–M arrest in cancer cells by generating superoxides, increasing
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caspase-3, caspase-7, and PARP cleavage, downregulating Akt phosphorylation, and upregulating p53
phosphorylation [49]. Curcumin also promotes selective tumor cell death and inhibits proliferation of
a human hepatocellular carcinoma cell line (Huh7 cells), providing unequivocal evidence of intricate
cross-talk between autophagy and cell death [50]. Another study demonstrated that curcumin increases
the sensitivity of neurofibromin deficient MPNST cells to TRAIL (TNF-related apoptosis-inducing
ligand), downregulating anti-apoptotic proteins [51,52]. Curcumin may also exert an anti-proliferative
effect by decreasing the enzymatic activity of the epidermal growth factor receptor (EGF-R). In fact,
NF1 Schwann cells exhibit an aberrant EGF-R expression, which has been linked to increased cellular
proliferation and malignancy [53].

Unfortunately, while curcumin is one of the most used nutraceuticals, its utility as a therapeutic
agent is limited by its poor water solubility, short biological half-life, and low bioavailability after
oral administration in certain tissues. Therefore, various approaches including the use of adjuvants,
liposomes, nanoparticles, phospholipid complexes and reformulation with various oils have been
tried [54]. Interestingly, our six-month observation results show that only the patients who followed
the MedDietCurcumin exhibited a plasmatic increase in curcumin concentration, indicating an
improvement of curcuminoid bioavailability. We can speculate that the simultaneous presence of a
high dietary concentration of EVO polyphenols and/or fatty acids contributes to this enhancement,
and, consequently, to the positive effect on reducing NF1 symptoms. However, this study has some
limitations, such as the small number of participants and the short-term exposure to MedDietCurcumin,
but we can hypothesize that the regular consumption of polyphenol-rich olive oil and curcumin can
maintain the effects observed in this study.

5. Conclusions

NF1 presents a unique situation in which the existence of widespread neurofibromas, and their
tendency to recur, calls for more effective and sustainable medical intervention than the simple surgical
removal of individual lesions. The results presented in this study are of particular interest as they are
the first clinical demonstration of the therapeutic activity on NF1 of curcumin in combination with a
dietary approach rich in polyphenols.

As shown by our data, the plasma level of curcumin increased in patients following
MedDietCurcumin; this suggests that curcuminoid bioavailability is positively influenced by
polyphenol-rich foods in the Mediterranean diet. However, this synergism between curcumin and
polyphenols needs to be confirmed on a larger cohort of NF1 patients.

Further studies are necessary to elucidate the molecular mechanisms by which MedDietCurcumin
is able to reduce both the number and volume of neurofibromas. In addition, clinical trials involving
new nanoformulations of curcumin conjugated with long-term observations may provide further
data on the potential therapeutic role of curcumin in NF1 as well as in other inherited or sporadic
cancer syndromes.
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