Local anaxonic neurons with graded potential release are important ingredients of nervous systems, present in the olfactory bulb system of mammalians and in the human visual system, as well as in arthropods and nematodes. We develop a neuronal network model including both axonic and anaxonic neurons and monitor the activity tuned by the following parameters: the decay length of the graded potential in local neurons, the fraction of local neurons, the largest eigenvalue of the adjacency matrix, and the range of connections of the local neurons. Tuning the fraction of local neurons, we derive the phase diagram including two transition lines: a critical line separating subcritical and supercritical regions, characterized by power-law distributions of avalanche sizes and durations, and a bifurcation line. We find that the overall behavior of the system is controlled by a parameter tuning the relevance of local neuron transmission with respect to the axonal one. The statistical properties of spontaneous activity are affected by local neurons at large fractions and on the condition that the graded potential transmission dominates the axonal one. In this case the scaling properties of spontaneous activity exhibit continuously varying exponents, rather than the mean-field branching model universality class.

Role of anaxonic local neurons in the crossover to continuously varying exponents for avalanche activity

de Arcangelis, L.
;
2021

Abstract

Local anaxonic neurons with graded potential release are important ingredients of nervous systems, present in the olfactory bulb system of mammalians and in the human visual system, as well as in arthropods and nematodes. We develop a neuronal network model including both axonic and anaxonic neurons and monitor the activity tuned by the following parameters: the decay length of the graded potential in local neurons, the fraction of local neurons, the largest eigenvalue of the adjacency matrix, and the range of connections of the local neurons. Tuning the fraction of local neurons, we derive the phase diagram including two transition lines: a critical line separating subcritical and supercritical regions, characterized by power-law distributions of avalanche sizes and durations, and a bifurcation line. We find that the overall behavior of the system is controlled by a parameter tuning the relevance of local neuron transmission with respect to the axonal one. The statistical properties of spontaneous activity are affected by local neurons at large fractions and on the condition that the graded potential transmission dominates the axonal one. In this case the scaling properties of spontaneous activity exhibit continuously varying exponents, rather than the mean-field branching model universality class.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/448641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact