Over 30 years of research has demonstrated that 3,5-diiodo-L-thyronine (3,5-T2), an endogenous metabolite of thyroid hormones, exhibits interesting metabolic activities. In rodent models, exogenously administered 3,5-T2 rapidly increases resting metabolic rate and elicits short-term beneficial hypolipidemic effects; however, very few studies have evaluated the effects of endogenous and exogenous T2 in humans. Further analyses on larger cohorts are needed to determine whether 3,5-T2 is a potent additional modulator of energy metabolism. In addition, while several lines of evidence suggest that 3,5-T2 mainly acts through Thyroid hormone receptors (THRs)- independent ways, with mitochondria as a likely cellular target, THRs-mediated actions have also been described. The detailed cellular and molecular mechanisms through which 3,5-T2 elicits a multiplicity of actions remains unknown. Here, we provide an overview of the most recent literature on 3,5-T2 bioactivity with a particular focus on short-term and long-term effects, describing data obtained through in vivo and in vitro approaches in both mammalian and non-mammalian species.

Over 30 years of research has demonstrated that 3,5-diiodo-L-thyronine (3,5-T2), an endogenous metabolite of thyroid hormones, exhibits interesting metabolic activities. In rodent models, exogenously administered 3,5-T2 rapidly increases resting metabolic rate and elicits short-term beneficial hypolipidemic effects; however, very few studies have evaluated the effects of endogenous and exogenous T2 in humans. Further analyses on larger cohorts are needed to determine whether 3,5-T2 is a potent additional modulator of energy metabolism. In addition, while several lines of evidence suggest that 3,5-T2 mainly acts through Thyroid hormone receptors (THRs)-independent ways, with mitochondria as a likely cellular target, THRs-mediated actions have also been described. The detailed cellular and molecular mechanisms through which 3,5-T2 elicits a multiplicity of actions remains unknown. Here, we provide an overview of the most recent literature on 3,5-T2 bioactivity with a particular focus on short-term and long-term effects, describing data obtained through in vivo and in vitro approaches in both mammalian and non-mammalian species.

3,5-Diiodothyronine: A Novel Thyroid Hormone Metabolite and Potent Modulator of Energy Metabolism

Senese, Rosalba;de Lange, Pieter;Petito, Giuseppe;Lanni, Antonia
2018

Abstract

Over 30 years of research has demonstrated that 3,5-diiodo-L-thyronine (3,5-T2), an endogenous metabolite of thyroid hormones, exhibits interesting metabolic activities. In rodent models, exogenously administered 3,5-T2 rapidly increases resting metabolic rate and elicits short-term beneficial hypolipidemic effects; however, very few studies have evaluated the effects of endogenous and exogenous T2 in humans. Further analyses on larger cohorts are needed to determine whether 3,5-T2 is a potent additional modulator of energy metabolism. In addition, while several lines of evidence suggest that 3,5-T2 mainly acts through Thyroid hormone receptors (THRs)-independent ways, with mitochondria as a likely cellular target, THRs-mediated actions have also been described. The detailed cellular and molecular mechanisms through which 3,5-T2 elicits a multiplicity of actions remains unknown. Here, we provide an overview of the most recent literature on 3,5-T2 bioactivity with a particular focus on short-term and long-term effects, describing data obtained through in vivo and in vitro approaches in both mammalian and non-mammalian species.
2018
Over 30 years of research has demonstrated that 3,5-diiodo-L-thyronine (3,5-T2), an endogenous metabolite of thyroid hormones, exhibits interesting metabolic activities. In rodent models, exogenously administered 3,5-T2 rapidly increases resting metabolic rate and elicits short-term beneficial hypolipidemic effects; however, very few studies have evaluated the effects of endogenous and exogenous T2 in humans. Further analyses on larger cohorts are needed to determine whether 3,5-T2 is a potent additional modulator of energy metabolism. In addition, while several lines of evidence suggest that 3,5-T2 mainly acts through Thyroid hormone receptors (THRs)- independent ways, with mitochondria as a likely cellular target, THRs-mediated actions have also been described. The detailed cellular and molecular mechanisms through which 3,5-T2 elicits a multiplicity of actions remains unknown. Here, we provide an overview of the most recent literature on 3,5-T2 bioactivity with a particular focus on short-term and long-term effects, describing data obtained through in vivo and in vitro approaches in both mammalian and non-mammalian species.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/400546
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 37
social impact