As reported in the literature, scaffolds for soft and hard tissue regeneration should satisfy several requirements. In the present work, the potential of 3D fiber deposition technique to design morphologically controlled scaffolds consisting of poly(ε-caprolactone) reinforced with sol-gel synthesized organic-inorganic hybrid fillers was demonstrated, also benefiting from a basic study carried out on 2D composite substrates. Finite element analysis, biological and mechanical tests were properly performed to assess the effects of the inclusion of the hybrid fillers on the performances of 2D substrates and 3D structures.

PCL loaded with sol-gel synthesized organic-inorganic hybrid fillers: from the analysis of 2D substrates to the design of 3D rapid prototyped composite scaffolds for tissue engineering

BOLLINO, Flavia;CATAURO, Michelina;
2012

Abstract

As reported in the literature, scaffolds for soft and hard tissue regeneration should satisfy several requirements. In the present work, the potential of 3D fiber deposition technique to design morphologically controlled scaffolds consisting of poly(ε-caprolactone) reinforced with sol-gel synthesized organic-inorganic hybrid fillers was demonstrated, also benefiting from a basic study carried out on 2D composite substrates. Finite element analysis, biological and mechanical tests were properly performed to assess the effects of the inclusion of the hybrid fillers on the performances of 2D substrates and 3D structures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/322226
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact