Background. Several alterations of protein structure and function have been reported in uremia. Impairment of a transmethylation-dependent protein repair mechanism possibly related to a derangement in homocysteine metabolism is also present in this condition, causing erythrocyte membrane protein damage. Homocysteine may affect proteins via the accumulation of its parent compound S-adenosylhomocysteine (AdoHcy), a powerful in vivo methyltransferase inhibitor. However, since plasma homocysteine is mostly protein bound, a direct influence on protein structures cannot be ruled out. We measured the levels of L-isoaspartyl residues in plasma proteins of uremic patients on hemodialysis. These damaged residues are markers of molecular age, which accumulate when transmethylation-dependent protein repair is inhibited and/or protein instability is increased. Methods. L-isoaspartyl residues in plasma proteins were quantitated using human recombinant protein carboxyl methyl transferase (PCMT). Plasma concentrations of homocysteine metabolites were also measured under different experimental conditions in hemodialysis patients. Results. The concentration of damaged plasma proteins was increased almost twofold compared to control (controls 147.83 ± 17.75, uremics 282.80 ± 26.40 pmol of incorporated methyl groups/mg protein, P < 0.003). The major protein involved comigrated with serum albumin. Although hyperhomocysteinemia caused a redistribution of thiols bound to plasma proteins, this mechanism did not significantly contribute to the increase in isoaspartyl residues. The S-adenosylmethionine (AdoMet)/AdoHcy concentration ratio, an indicator of the flux of methyl group transfer, was altered. This ratio was partially corrected by folate treatment (0.385 ± 0.046 vs. 0.682 ± 0.115, P < 0.01), but protein L-isoaspartate content was not. Conclusions. Plasma protein damage, as determined by protein L-isoaspartyl content, is increased in uremia. This alteration is to be ascribed to an increased protein structural instability, rather than the effect of hyperhomocysteinemia.

Plasma proteins containing damaged L-isoaspartyl residues are increased in uremia: Implications for mechanism

PERNA, Alessandra;INGROSSO, Diego
2001

Abstract

Background. Several alterations of protein structure and function have been reported in uremia. Impairment of a transmethylation-dependent protein repair mechanism possibly related to a derangement in homocysteine metabolism is also present in this condition, causing erythrocyte membrane protein damage. Homocysteine may affect proteins via the accumulation of its parent compound S-adenosylhomocysteine (AdoHcy), a powerful in vivo methyltransferase inhibitor. However, since plasma homocysteine is mostly protein bound, a direct influence on protein structures cannot be ruled out. We measured the levels of L-isoaspartyl residues in plasma proteins of uremic patients on hemodialysis. These damaged residues are markers of molecular age, which accumulate when transmethylation-dependent protein repair is inhibited and/or protein instability is increased. Methods. L-isoaspartyl residues in plasma proteins were quantitated using human recombinant protein carboxyl methyl transferase (PCMT). Plasma concentrations of homocysteine metabolites were also measured under different experimental conditions in hemodialysis patients. Results. The concentration of damaged plasma proteins was increased almost twofold compared to control (controls 147.83 ± 17.75, uremics 282.80 ± 26.40 pmol of incorporated methyl groups/mg protein, P < 0.003). The major protein involved comigrated with serum albumin. Although hyperhomocysteinemia caused a redistribution of thiols bound to plasma proteins, this mechanism did not significantly contribute to the increase in isoaspartyl residues. The S-adenosylmethionine (AdoMet)/AdoHcy concentration ratio, an indicator of the flux of methyl group transfer, was altered. This ratio was partially corrected by folate treatment (0.385 ± 0.046 vs. 0.682 ± 0.115, P < 0.01), but protein L-isoaspartate content was not. Conclusions. Plasma protein damage, as determined by protein L-isoaspartyl content, is increased in uremia. This alteration is to be ascribed to an increased protein structural instability, rather than the effect of hyperhomocysteinemia.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/234238
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact