The transcription factor/nuclear receptor Nurr1 is essential for the differentiation of midbrain dopaminergic neurones. Here we demonstrate that, during the ontogeny of rat ventral mesencephalon, nurr1 gene expression is developmentally regulated and its levels show a sharp peak between embryonic day E13 and E15, when most dopaminergic neurones differentiate. In addition, in primary cultures from embryonic rat mesencephalon, nurr1 gene follows a temporal pattern of expression comparable to that observed in vivo. We also report that exposure of embryonic mesencephalic cultures to depolarizing stimuli leads to a robust increase in nurr1 mRNA and protein. The depolarizing effect is also detected in mesencephalic cultures enriched in dopaminergic neurones by using a combination of bFGF and Sonic hedgehog. The latter further increases the number of dopaminergic neurones in these 'expanded' cultures, an effect abolished in the presence of anti-Sonic hedgehog antibodies. Our data show that nurr1 gene is highly expressed in midbrain dopaminergic neurones in a sharp temporal window and that its expression is plastic, both in vivo and in vitro. In addition we show that Sonic hedgehog can direct dopaminergic differentiation in proliferating dopaminergic neuroblasts in vitro.

Modulation of nurr1 gene expression in mesencephalic dopaminergic neurones

COLUCCI D'AMATO, Generoso Luca;
2004

Abstract

The transcription factor/nuclear receptor Nurr1 is essential for the differentiation of midbrain dopaminergic neurones. Here we demonstrate that, during the ontogeny of rat ventral mesencephalon, nurr1 gene expression is developmentally regulated and its levels show a sharp peak between embryonic day E13 and E15, when most dopaminergic neurones differentiate. In addition, in primary cultures from embryonic rat mesencephalon, nurr1 gene follows a temporal pattern of expression comparable to that observed in vivo. We also report that exposure of embryonic mesencephalic cultures to depolarizing stimuli leads to a robust increase in nurr1 mRNA and protein. The depolarizing effect is also detected in mesencephalic cultures enriched in dopaminergic neurones by using a combination of bFGF and Sonic hedgehog. The latter further increases the number of dopaminergic neurones in these 'expanded' cultures, an effect abolished in the presence of anti-Sonic hedgehog antibodies. Our data show that nurr1 gene is highly expressed in midbrain dopaminergic neurones in a sharp temporal window and that its expression is plastic, both in vivo and in vitro. In addition we show that Sonic hedgehog can direct dopaminergic differentiation in proliferating dopaminergic neuroblasts in vitro.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/220371
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 27
social impact