The combined genotoxic effects of four anticancer drugs (5-fluorouracil [5-FU], cisplatin [CDDP], etoposide [ET] and imatinib mesylate [IM]) were studied testing their binary mixtures on two crustaceans of the freshwater aquatic chain. The in vivo comet assay on cells from Daphnia magna and Ceriodaphnia dubia was used in single and combined exposure experiments. Assessment was based on two distinct effect sizes determined from dose-response experiments. Doses for single and combined exposures expected to result in these effect sizes were computed based on Bliss independence as reference model. Statistical comparison by analysis of variance of single and combined toxicities allowed accepting or rejecting the independency hypothesis. The results in D. magna showed independent action for all mixtures except for IM+5-FU that showed an antagonistic interaction. In C. dubia, most mixtures had antagonist interactions except IM+5-FU and IM+CDDP that showed Bliss independence. Despite the antagonistic interactions our results demonstrated that combinations of anticancer drugs could be of environmental concern because effects occur at very low concentrations that are in the range of concentrations encountered in aquatic systems.

The combined genotoxic effects of four anticancer drugs (5-fluorouracil [5-FU], cisplatin [CDDP], etoposide [ET], and imatinib mesylate [IM]) were studied testing their binary mixtures in two crustaceans that are part of the freshwater food chain, namely Daphnia magna and Ceriodaphnia dubia. Genotoxicity was assessed using the in vivo comet assay. Assessment was based on two distinct effect sizes determined from dose-response experiments. Doses for single and combined exposures expected to result in these effect sizes were computed based on Bliss independence as reference model. Statistical comparison by analysis of variance of single and combined toxicities allowed accepting or rejecting the independency hypothesis. The results obtained for D. magna showed independent action for all mixtures except for IM+5-FU that showed an antagonistic interaction. In C. dubia, most mixtures had antagonist interactions except IM+5-FU and IM+CDDP that showed Bliss independence. Despite the antagonistic interactions, our results demonstrated that combinations of anticancer drugs could be of environmental concern because effects occur at very low concentrations that are in the range of concentrations encountered in aquatic systems.

Prediction and assessment of ecogenotoxicity of antineoplastic drugs in binary mixtures

LAVORGNA, Margherita;Russo C;ISIDORI, Marina
2016

Abstract

The combined genotoxic effects of four anticancer drugs (5-fluorouracil [5-FU], cisplatin [CDDP], etoposide [ET], and imatinib mesylate [IM]) were studied testing their binary mixtures in two crustaceans that are part of the freshwater food chain, namely Daphnia magna and Ceriodaphnia dubia. Genotoxicity was assessed using the in vivo comet assay. Assessment was based on two distinct effect sizes determined from dose-response experiments. Doses for single and combined exposures expected to result in these effect sizes were computed based on Bliss independence as reference model. Statistical comparison by analysis of variance of single and combined toxicities allowed accepting or rejecting the independency hypothesis. The results obtained for D. magna showed independent action for all mixtures except for IM+5-FU that showed an antagonistic interaction. In C. dubia, most mixtures had antagonist interactions except IM+5-FU and IM+CDDP that showed Bliss independence. Despite the antagonistic interactions, our results demonstrated that combinations of anticancer drugs could be of environmental concern because effects occur at very low concentrations that are in the range of concentrations encountered in aquatic systems.
2016
The combined genotoxic effects of four anticancer drugs (5-fluorouracil [5-FU], cisplatin [CDDP], etoposide [ET] and imatinib mesylate [IM]) were studied testing their binary mixtures on two crustaceans of the freshwater aquatic chain. The in vivo comet assay on cells from Daphnia magna and Ceriodaphnia dubia was used in single and combined exposure experiments. Assessment was based on two distinct effect sizes determined from dose-response experiments. Doses for single and combined exposures expected to result in these effect sizes were computed based on Bliss independence as reference model. Statistical comparison by analysis of variance of single and combined toxicities allowed accepting or rejecting the independency hypothesis. The results in D. magna showed independent action for all mixtures except for IM+5-FU that showed an antagonistic interaction. In C. dubia, most mixtures had antagonist interactions except IM+5-FU and IM+CDDP that showed Bliss independence. Despite the antagonistic interactions our results demonstrated that combinations of anticancer drugs could be of environmental concern because effects occur at very low concentrations that are in the range of concentrations encountered in aquatic systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/195827
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact