Nm23-H1 is one of the most interesting candidate genes for a relevant role in Neuroblastoma pathogenesis. H-Prune is the most characterized Nm23-H1 binding partner, and its overexpression has been shown in different human cancers. Our study focuses on the role of the Nm23-H1/h-Prune protein complex in Neuroblastoma. Using NMR spectroscopy, we performed a conformational analysis of the h-Prune C-terminal to identify the amino acids involved in the interaction with Nm23-H1. We developed a competitive permeable peptide (CPP) to impair the formation of the Nm23-H1/h-Prune complex and demonstrated that CPP causes impairment of cell motility, substantial impairment of tumor growth and metastases formation. Meta-analysis performed on three Neuroblastoma cohorts showed Nm23-H1 as the gene highly associated to Neuroblastoma aggressiveness. We also identified two other proteins (PTPRA and TRIM22) with expression levels significantly affected by CPP. These data suggest a new avenue for potential clinical application of CPP in Neuroblastoma treatment.

Neuroblastoma tumorigenesis is regulated through the Nm23-H1/h-Prune C-terminal interaction

FATTORUSSO, Roberto;
2013

Abstract

Nm23-H1 is one of the most interesting candidate genes for a relevant role in Neuroblastoma pathogenesis. H-Prune is the most characterized Nm23-H1 binding partner, and its overexpression has been shown in different human cancers. Our study focuses on the role of the Nm23-H1/h-Prune protein complex in Neuroblastoma. Using NMR spectroscopy, we performed a conformational analysis of the h-Prune C-terminal to identify the amino acids involved in the interaction with Nm23-H1. We developed a competitive permeable peptide (CPP) to impair the formation of the Nm23-H1/h-Prune complex and demonstrated that CPP causes impairment of cell motility, substantial impairment of tumor growth and metastases formation. Meta-analysis performed on three Neuroblastoma cohorts showed Nm23-H1 as the gene highly associated to Neuroblastoma aggressiveness. We also identified two other proteins (PTPRA and TRIM22) with expression levels significantly affected by CPP. These data suggest a new avenue for potential clinical application of CPP in Neuroblastoma treatment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/195532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 33
social impact