Import of acylcarnitine into mitochondrial matrix through carnitine/acylcarnitine-translocase (CACT) is fundamental for lipid catabolism. To probe the effect of CACT down-expression on lipid metabolism in muscle, human myocytes were stably transfected with CACT-antisense construct. In presence of low concentration of palmitate, transfected cells showed decreased palmitate oxidation and acetyl-carnitine content, increased palmitoyl-carnitine level, and reduced insulin-dependent decrease of fatty acylcarnitine-to-fatty acyl-CoA ratio. The augmented palmitoyl-carnitine synthesis, also in the presence of insulin, could be related to an altered regulation of carnitine-palmitoyl-transferase 1 (CPT 1) by malonyl-CoA, whose synthesis is dependent by the availability of cytosolic acetyl-groups. Indeed, all the described effects were completely overcome by CACT neo-expression by recombinant adenovirus vector or by addition of acetyl-carnitine to cultures. Acetyl-carnitine effect was related to an increase of malonyl-CoA and was abolished by down-expression, via antisense RNA strategy, of acetyl-CoA carboxylase-b, the mitochondrial membrane enzyme involved in the direct CPT 1 inhibition via malonyl-CoA synthesis. Thus, in our experimental model the modulation of CACTexpression has consequences for CPT 1 activity, while the biologic effects of acetyl-carnitine are not associated with a generic supply of energy compounds but to the anaplerotic property of the molecule.

Differential carnitine/acylcarnitine translocase expression defines distinct metabolic signatures in skeletal muscle cells

MELONE, Mariarosa Anna Beatrice;
2005

Abstract

Import of acylcarnitine into mitochondrial matrix through carnitine/acylcarnitine-translocase (CACT) is fundamental for lipid catabolism. To probe the effect of CACT down-expression on lipid metabolism in muscle, human myocytes were stably transfected with CACT-antisense construct. In presence of low concentration of palmitate, transfected cells showed decreased palmitate oxidation and acetyl-carnitine content, increased palmitoyl-carnitine level, and reduced insulin-dependent decrease of fatty acylcarnitine-to-fatty acyl-CoA ratio. The augmented palmitoyl-carnitine synthesis, also in the presence of insulin, could be related to an altered regulation of carnitine-palmitoyl-transferase 1 (CPT 1) by malonyl-CoA, whose synthesis is dependent by the availability of cytosolic acetyl-groups. Indeed, all the described effects were completely overcome by CACT neo-expression by recombinant adenovirus vector or by addition of acetyl-carnitine to cultures. Acetyl-carnitine effect was related to an increase of malonyl-CoA and was abolished by down-expression, via antisense RNA strategy, of acetyl-CoA carboxylase-b, the mitochondrial membrane enzyme involved in the direct CPT 1 inhibition via malonyl-CoA synthesis. Thus, in our experimental model the modulation of CACTexpression has consequences for CPT 1 activity, while the biologic effects of acetyl-carnitine are not associated with a generic supply of energy compounds but to the anaplerotic property of the molecule.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/194860
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 8
social impact