We report a systematic study of the transport properties of high critical temperature superconductor (HTS) biepitaxial Josephson junctions in the submicron range. Junction performances point to more uniform and reproducible devices and to better control of d-wave intrinsic properties. Outcomes promote novel insights into the transport mechanisms across grain boundaries and encourage further developments in the control of dissipation in HTS devices. The application of nanotechnology to HTS could be an additional tool to properly engineer the junction properties to match specific circuit design also in view of the integration into hybrid quantum circuits.

Submicron YBaCuO biepitaxial Josephson junctions: d-wave effects and phase dynamics

ROTOLI, Giacomo;TAFURI, Francesco
2010

Abstract

We report a systematic study of the transport properties of high critical temperature superconductor (HTS) biepitaxial Josephson junctions in the submicron range. Junction performances point to more uniform and reproducible devices and to better control of d-wave intrinsic properties. Outcomes promote novel insights into the transport mechanisms across grain boundaries and encourage further developments in the control of dissipation in HTS devices. The application of nanotechnology to HTS could be an additional tool to properly engineer the junction properties to match specific circuit design also in view of the integration into hybrid quantum circuits.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/185935
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact