Vascular surgery aimed at stenosis removal induces local reactions often leading to restenosis. Although extensive analysis has been focused on pathways activated in injured arteries, little attention has been devoted to associated systemic vascular reactions. The aim of the present study was to analyse changes occurring in contralateral uninjured rat carotid arteries in the acute phase following unilateral injury. WKY (Wistar–Kyoto) rats were subjected to unilateral carotid arteriotomy. Contralateral uninjured carotid arteries were harvested from 4 h to 7 days after injury. Carotid arteries were also harvested from sham-operated rats and uninjured rats. Carotid morphology and morphometry were examined. Affymetrix microarrays were used for differential analysis of gene expression. A subset of data was validated by real-time RT–PCR (reverse transcription–PCR) and verified at the protein level byWestern blotting. A total of 1011 genes were differentially regulated in contralateral uninjured carotid arteries from 4 h to 7 days after arteriotomy (P<0.0001; fold change, *2) and were classified into 19 gene ontology functional categories. To a lesser extent, mRNA variations also occurred in carotid arteries of sham-operated rats. Among the changes, up-regulation of members of the RAS (renin–angiotensin system) was detected, with possible implications for vasocompensative mechanisms induced by arteriotomy. In particular, a selective increase in the 69 kDa isoform of the N-domain of ACE (angiotensin-converting enzyme), and not the classical somatic 195 kDa isoform, was observed in contralateral uninjured carotid arteries, suggesting that this 69 kDa isoenzyme could influence local AngII (angiotensin II) production. In conclusion, systemic reactions to injury occur in the vasculature, with potential clinical relevance, and suggest that caution is needed in the choice of controls during experimental design in vivo.

Injury to rat carotid arteries causes time-dependent changes in gene expression in contralateral uninjured arteries

SANTE', Pasquale;GALDERISI, Umberto;BERRINO, Liberato;DE FEO, Marisa;ROSSI, Francesco;CIPOLLARO, Marilena
2009

Abstract

Vascular surgery aimed at stenosis removal induces local reactions often leading to restenosis. Although extensive analysis has been focused on pathways activated in injured arteries, little attention has been devoted to associated systemic vascular reactions. The aim of the present study was to analyse changes occurring in contralateral uninjured rat carotid arteries in the acute phase following unilateral injury. WKY (Wistar–Kyoto) rats were subjected to unilateral carotid arteriotomy. Contralateral uninjured carotid arteries were harvested from 4 h to 7 days after injury. Carotid arteries were also harvested from sham-operated rats and uninjured rats. Carotid morphology and morphometry were examined. Affymetrix microarrays were used for differential analysis of gene expression. A subset of data was validated by real-time RT–PCR (reverse transcription–PCR) and verified at the protein level byWestern blotting. A total of 1011 genes were differentially regulated in contralateral uninjured carotid arteries from 4 h to 7 days after arteriotomy (P<0.0001; fold change, *2) and were classified into 19 gene ontology functional categories. To a lesser extent, mRNA variations also occurred in carotid arteries of sham-operated rats. Among the changes, up-regulation of members of the RAS (renin–angiotensin system) was detected, with possible implications for vasocompensative mechanisms induced by arteriotomy. In particular, a selective increase in the 69 kDa isoform of the N-domain of ACE (angiotensin-converting enzyme), and not the classical somatic 195 kDa isoform, was observed in contralateral uninjured carotid arteries, suggesting that this 69 kDa isoenzyme could influence local AngII (angiotensin II) production. In conclusion, systemic reactions to injury occur in the vasculature, with potential clinical relevance, and suggest that caution is needed in the choice of controls during experimental design in vivo.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/185575
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact