The perturb and observe (P&O) best operation conditions are investigated in order to identify the edge efficiency performances of this most popular maximum power point tracking (MPPT) technique for photovoltaic (PV) applications. It is shown that P&O may guarantee top-level efficiency, provided that a proper predictive (by means of a parabolic interpolation of the last three operating points) and adaptive (based on the measure of the actual power) hill climbing strategy is adopted. The approach proposed is aimed at realizing, in addition to absolute best tracking performances, high robustness and promptness both in sunny and cloudy weather conditions. The power gain with respect to standard P&O technique is proved by means of simulation results and experimental measurements performed on a low power system. Besides the performance improvements, it is shown that the proposed approach allows possible reduction of hardware costs of analog-to-digital (A/D) converters used in the MPPT control circuitry.

Predictive & Adaptive MPPT Perturb and Observe Method

VITELLI, Massimo
2007

Abstract

The perturb and observe (P&O) best operation conditions are investigated in order to identify the edge efficiency performances of this most popular maximum power point tracking (MPPT) technique for photovoltaic (PV) applications. It is shown that P&O may guarantee top-level efficiency, provided that a proper predictive (by means of a parabolic interpolation of the last three operating points) and adaptive (based on the measure of the actual power) hill climbing strategy is adopted. The approach proposed is aimed at realizing, in addition to absolute best tracking performances, high robustness and promptness both in sunny and cloudy weather conditions. The power gain with respect to standard P&O technique is proved by means of simulation results and experimental measurements performed on a low power system. Besides the performance improvements, it is shown that the proposed approach allows possible reduction of hardware costs of analog-to-digital (A/D) converters used in the MPPT control circuitry.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/165661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact